Impala GROUP BY子句與SELECT語句協(xié)作使用,以將相同的數(shù)據(jù)排列到組中。
以下是GROUP BY子句的語法。
select data from table_name Group BY col_name;
假設(shè)我們?cè)跀?shù)據(jù)庫my_db中有一個(gè)名為customers的表,其內(nèi)容如下 -
[quickstart.cloudera:21000] > select * from customers; Query: select * from customers +----+----------+-----+-----------+--------+ | id | name | age | address | salary | +----+----------+-----+-----------+--------+ | 1 | Ramesh | 32 | Ahmedabad | 20000 | | 2 | Khilan | 25 | Delhi | 15000 | | 3 | kaushik | 23 | Kota | 30000 | | 4 | Chaitali | 25 | Mumbai | 35000 | | 5 | Hardik | 27 | Bhopal | 40000 | | 6 | Komal | 22 | MP | 32000 | +----+----------+-----+-----------+--------+ Fetched 6 row(s) in 0.51s
您可以使用GROUP BY查詢獲得每個(gè)客戶的工資總額,如下所示。
[quickstart.cloudera:21000] > Select name, sum(salary) from customers Group BY name;
執(zhí)行時(shí),上述查詢給出以下輸出。
Query: select name, sum(salary) from customers Group BY name +----------+-------------+ | name | sum(salary) | +----------+-------------+ | Ramesh | 20000 | | Komal | 32000 | | Hardik | 40000 | | Khilan | 15000 | | Chaitali | 35000 | | kaushik | 30000 | +----------+-------------+ Fetched 6 row(s) in 1.75s
假設(shè)此表有多個(gè)記錄,如下所示。
+----+----------+-----+-----------+--------+ | id | name | age | address | salary | +----+----------+-----+-----------+--------+ | 1 | Ramesh | 32 | Ahmedabad | 20000 | | 2 | Ramesh | 32 | Ahmedabad | 1000 | | 3 | Khilan | 25 | Delhi | 15000 | | 4 | kaushik | 23 | Kota | 30000 | | 5 | Chaitali | 25 | Mumbai | 35000 | | 6 | Chaitali | 25 | Mumbai | 2000 | | 7 | Hardik | 27 | Bhopal | 40000 | | 8 | Komal | 22 | MP | 32000 | +----+----------+-----+-----------+--------+
現(xiàn)在,您可以使用Group By子句,如下所示,考慮重復(fù)的記錄條目,獲取員工的總工資。
Select name, sum(salary) from customers Group BY name;
執(zhí)行時(shí),上述查詢給出以下輸出。
Query: select name, sum(salary) from customers Group BY name +----------+-------------+ | name | sum(salary) | +----------+-------------+ | Ramesh | 21000 | | Komal | 32000 | | Hardik | 40000 | | Khilan | 15000 | | Chaitali | 37000 | | kaushik | 30000 | +----------+-------------+ Fetched 6 row(s) in 1.75s
更多建議: