JOIN是子句用于通過使用共同值組合來自兩個表特定字段。它是用來從數(shù)據庫中的兩個或更多的表組合的記錄。它或多或少類似于SQL JOIN。
join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition | table_reference CROSS JOIN table_reference [join_condition]
我們在本章中將使用下面的兩個表??紤]下面的表CUSTOMERS..
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
考慮另一個表命令如下:
+-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+
有不同類型的聯(lián)接給出如下:
JOIN子句用于合并和檢索來自多個表中的記錄。 JOIN和SQLOUTER JOIN 類似。連接條件是使用主鍵和表的外鍵。
下面的查詢執(zhí)行JOIN的CUSTOMER和ORDER表,并檢索記錄:
hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT > FROM CUSTOMERS c JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功執(zhí)行查詢后,能看到以下回應:
+----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+
HiveQL LEFT OUTER JOIN返回所有行左表,即使是在正確的表中沒有匹配。這意味著,如果ON子句匹配的右表0(零)記錄,JOIN還是返回結果行,但在右表中的每一列為NULL。
LEFT JOIN返回左表中的所有的值,加上右表,或JOIN子句沒有匹配的情況下返回NULL。
下面的查詢演示了CUSTOMER 和ORDER 表之間的LEFT OUTER JOIN用法:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > LEFT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功執(zhí)行查詢后,能看到以下回應:
+----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+
HiveQL RIGHT OUTER JOIN返回右邊表的所有行,即使有在左表中沒有匹配。如果ON子句的左表匹配0(零)的記錄,JOIN結果返回一行,但在左表中的每一列為NULL。
RIGHT JOIN返回右表中的所有值,加上左表,或者沒有匹配的情況下返回NULL。
下面的查詢演示了在CUSTOMER和ORDER表之間使用RIGHT OUTER JOIN。
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > RIGHT OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功執(zhí)行查詢后,能看到以下回應:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+
HiveQL FULL OUTER JOIN結合了左邊,并且滿足JOIN條件合適外部表的記錄。連接表包含兩個表的所有記錄,或兩側缺少匹配結果那么使用NULL值填補
下面的查詢演示了CUSTOMER 和ORDER 表之間使用的FULL OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE > FROM CUSTOMERS c > FULL OUTER JOIN ORDERS o > ON (c.ID = o.CUSTOMER_ID);
成功執(zhí)行查詢后,能看到以下回應:
+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+
更多建議: