本章介紹了SELECT語句的GROUP BY子句。GROUP BY子句用于分類所有記錄結果的特定集合列。它被用來查詢一組記錄。
GROUP BY子句的語法如下:
SELECT [ALL | DISTINCT] select_expr, select_expr, ... FROM table_reference [WHERE where_condition] [GROUP BY col_list] [HAVING having_condition] [ORDER BY col_list]] [LIMIT number];
讓我們以SELECT... GROUP BY子句為例。假設員工表有如下Id, Name, Salary, Designation, 和 Dept字段。產(chǎn)生一個查詢以檢索每個部門的員工數(shù)量。
+------+--------------+-------------+-------------------+--------+ | ID | Name | Salary | Designation | Dept | +------+--------------+-------------+-------------------+--------+ |1201 | Gopal | 45000 | Technical manager | TP | |1202 | Manisha | 45000 | Proofreader | PR | |1203 | Masthanvali | 40000 | Technical writer | TP | |1204 | Krian | 45000 | Proofreader | PR | |1205 | Kranthi | 30000 | Op Admin | Admin | +------+--------------+-------------+-------------------+--------+
下面使用上述業(yè)務情景查詢檢索員工的詳細信息。
hive> SELECT Dept,count(*) FROM employee GROUP BY DEPT;
成功執(zhí)行查詢后,能看到以下回應:
+------+--------------+ | Dept | Count(*) | +------+--------------+ |Admin | 1 | |PR | 2 | |TP | 3 | +------+--------------+
下面給出的是JDBC程序應用對給定的GROUP BY子句例子。
import java.sql.SQLException; import java.sql.Connection; import java.sql.ResultSet; import java.sql.Statement; import java.sql.DriverManager; public class HiveQLGroupBy { private static String driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; public static void main(String[] args) throws SQLException { // Register driver and create driver instance Class.forName(driverName); // get connection Connection con = DriverManager. getConnection("jdbc:hive://localhost:10000/userdb", "", ""); // create statement Statement stmt = con.createStatement(); // execute statement Resultset res = stmt.executeQuery(“SELECT Dept,count(*) ” + “FROM employee GROUP BY DEPT; ”); System.out.println(" Dept \t count(*)"); while (res.next()) { System.out.println(res.getString(1) + " " + res.getInt(2)); } con.close(); } }
保存程序在一個名為HiveQLGroupBy.java文件。使用下面的命令來編譯并執(zhí)行這個程序。
$ javac HiveQLGroupBy.java $ java HiveQLGroupBy
Dept Count(*) Admin 1 PR 2 TP 3
更多建議: