機器學習的重要應(yīng)用之一就是圖像識別,在圖像識別中比較好實現(xiàn)的圖像識別當屬手寫數(shù)字識別,那么pytorch怎么實現(xiàn)手寫數(shù)字圖片識別呢?接下來這篇文章告訴你!
本文實例為大家分享了pytorch實現(xiàn)手寫數(shù)字圖片識別的具體代碼,供大家參考,具體內(nèi)容如下
數(shù)據(jù)集:MNIST數(shù)據(jù)集,代碼中會自動下載,不用自己手動下載。數(shù)據(jù)集很小,不需要GPU設(shè)備,可以很好的體會到pytorch的魅力。
模型+訓練+預測程序:
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
from utils import plot_image, plot_curve, one_hot
# step1 load dataset
batch_size = 512
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,)
)
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,)
)
])),
batch_size=batch_size, shuffle=False)
x , y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, "image_sample")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28*28, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
# x: [b, 1, 28, 28]
# h1 = relu(xw1 + b1)
x = F.relu(self.fc1(x))
# h2 = relu(h1w2 + b2)
x = F.relu(self.fc2(x))
# h3 = h2w3 + b3
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
train_loss = []
for epoch in range(3):
for batch_idx, (x, y) in enumerate(train_loader):
#加載進來的圖片是一個四維的tensor,x: [b, 1, 28, 28], y:[512]
#但是我們網(wǎng)絡(luò)的輸入要是一個一維向量(也就是二維tensor),所以要進行展平操作
x = x.view(x.size(0), 28*28)
# [b, 10]
out = net(x)
y_onehot = one_hot(y)
# loss = mse(out, y_onehot)
loss = F.mse_loss(out, y_onehot)
optimizer.zero_grad()
loss.backward()
# w' = w - lr*grad
optimizer.step()
train_loss.append(loss.item())
if batch_idx % 10 == 0:
print(epoch, batch_idx, loss.item())
plot_curve(train_loss)
# we get optimal [w1, b1, w2, b2, w3, b3]
total_correct = 0
for x,y in test_loader:
x = x.view(x.size(0), 28*28)
out = net(x)
# out: [b, 10]
pred = out.argmax(dim=1)
correct = pred.eq(y).sum().float().item()
total_correct += correct
total_num = len(test_loader.dataset)
acc = total_correct/total_num
print("acc:", acc)
x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, "test")
主程序中調(diào)用的函數(shù)(注意命名為utils):
import torch
from matplotlib import pyplot as plt
def plot_curve(data):
fig = plt.figure()
plt.plot(range(len(data)), data, color='blue')
plt.legend(['value'], loc='upper right')
plt.xlabel('step')
plt.ylabel('value')
plt.show()
def plot_image(img, label, name):
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.tight_layout()
plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
plt.title("{}: {}".format(name, label[i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
def one_hot(label, depth=10):
out = torch.zeros(label.size(0), depth)
idx = torch.LongTensor(label).view(-1, 1)
out.scatter_(dim=1, index=idx, value=1)
return out
打印出損失下降的曲線圖:
訓練3個epoch之后,在測試集上的精度就可以89%左右,可見模型的準確度還是很不錯的。
輸出六張測試集的圖片以及預測結(jié)果:
六張圖片的預測全部正確。
以上就是pytorch實現(xiàn)手寫數(shù)字圖片識別的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持W3Cschool。