App下載

windows使用PySpark環(huán)境配置和基本操作

猿友 2021-08-06 11:54:50 瀏覽數(shù) (3510)
反饋

pyspark是spark為python開發(fā)者專門提供的api,他可以使用python來調(diào)用spark的計(jì)算引擎用于進(jìn)行數(shù)據(jù)分析。學(xué)習(xí)pyspark的第一步就是pyspark環(huán)境配置和基本操作,接下來小編就來介紹一下這兩點(diǎn)內(nèi)容。

下載依賴

首先需要下載hadoop和spark,解壓,然后設(shè)置環(huán)境變量。
hadoop清華源下載
spark清華源下載

HADOOP_HOME => /path/hadoop
SPARK_HOME => /path/spark

安裝pyspark。

pip install pyspark

基本使用

可以在shell終端,輸入pyspark,有如下回顯:


輸入以下指令進(jìn)行測(cè)試,并創(chuàng)建SparkContext,SparkContext是任何spark功能的入口點(diǎn)。

>>> from pyspark import SparkContext
>>> sc = SparkContext("local", "First App")

如果以上不會(huì)報(bào)錯(cuò),恭喜可以開始使用pyspark編寫代碼了。
不過,我這里使用IDE來編寫代碼,首先我們先在終端執(zhí)行以下代碼關(guān)閉SparkContext。

>>> sc.stop()

下面使用pycharm編寫代碼,如果修改了環(huán)境變量需要先重啟pycharm。
在pycharm運(yùn)行如下程序,程序會(huì)起本地模式的spark計(jì)算引擎,通過spark統(tǒng)計(jì)abc.txt文件中a和b出現(xiàn)行的數(shù)量,文件路徑需要自己指定。

from pyspark import SparkContext

sc = SparkContext("local", "First App")
logFile = "abc.txt"
logData = sc.textFile(logFile).cache()
numAs = logData.filter(lambda s: 'a' in s).count()
numBs = logData.filter(lambda s: 'b' in s).count()
print("Line with a:%i,line with b:%i" % (numAs, numBs))

運(yùn)行結(jié)果如下:

20/03/11 16:15:57 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
20/03/11 16:15:58 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Line with a:3,line with b:1

這里說一下,同樣的工作使用python可以做,spark也可以做,使用spark主要是為了高效的進(jìn)行分布式計(jì)算。
戳pyspark教程
戳spark教程

RDD

RDD代表Resilient Distributed Dataset,它們是在多個(gè)節(jié)點(diǎn)上運(yùn)行和操作以在集群上進(jìn)行并行處理的元素,RDD是spark計(jì)算的操作對(duì)象。
一般,我們先使用數(shù)據(jù)創(chuàng)建RDD,然后對(duì)RDD進(jìn)行操作。
對(duì)RDD操作有兩種方法:
Transformation(轉(zhuǎn)換) - 這些操作應(yīng)用于RDD以創(chuàng)建新的RDD。例如filter,groupBy和map。
Action(操作) - 這些是應(yīng)用于RDD的操作,它指示Spark執(zhí)行計(jì)算并將結(jié)果發(fā)送回驅(qū)動(dòng)程序,例如count,collect等。

創(chuàng)建RDD

parallelize是從列表創(chuàng)建RDD,先看一個(gè)例子:

from pyspark import SparkContext


sc = SparkContext("local", "count app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
print(words)

結(jié)果中我們得到一個(gè)對(duì)象,就是我們列表數(shù)據(jù)的RDD對(duì)象,spark之后可以對(duì)他進(jìn)行操作。

ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:195

Count

count方法返回RDD中的元素個(gè)數(shù)。

from pyspark import SparkContext


sc = SparkContext("local", "count app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
print(words)

counts = words.count()
print("Number of elements in RDD -> %i" % counts)

返回結(jié)果:

Number of elements in RDD -> 8

Collect

collect返回RDD中的所有元素。

from pyspark import SparkContext


sc = SparkContext("local", "collect app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
coll = words.collect()
print("Elements in RDD -> %s" % coll)

返回結(jié)果:

Elements in RDD -> ['scala', 'java', 'hadoop', 'spark', 'akka', 'spark vs hadoop', 'pyspark', 'pyspark and spark']

foreach

每個(gè)元素會(huì)使用foreach內(nèi)的函數(shù)進(jìn)行處理,但是不會(huì)返回任何對(duì)象。
下面的程序中,我們定義的一個(gè)累加器accumulator,用于儲(chǔ)存在foreach執(zhí)行過程中的值。

from pyspark import SparkContext
sc = SparkContext("local", "ForEach app")

accum = sc.accumulator(0)
data = [1, 2, 3, 4, 5]
rdd = sc.parallelize(data)


def increment_counter(x):
    print(x)
    accum.add(x)
 return 0

s = rdd.foreach(increment_counter)
print(s)  # None
print("Counter value: ", accum)

返回結(jié)果:

None
Counter value:  15

filter

返回一個(gè)包含元素的新RDD,滿足過濾器的條件。

from pyspark import SparkContext
sc = SparkContext("local", "Filter app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)
words_filter = words.filter(lambda x: 'spark' in x)
filtered = words_filter.collect()
print("Fitered RDD -> %s" % (filtered))

 

Fitered RDD -> ['spark', 'spark vs hadoop', 'pyspark', 'pyspark and spark']

也可以改寫成這樣:

from pyspark import SparkContext
sc = SparkContext("local", "Filter app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)


def g(x):
    for i in x:
        if "spark" in x:
            return i

words_filter = words.filter(g)
filtered = words_filter.collect()
print("Fitered RDD -> %s" % (filtered))

map

將函數(shù)應(yīng)用于RDD中的每個(gè)元素并返回新的RDD。

from pyspark import SparkContext
sc = SparkContext("local", "Map app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)
words_map = words.map(lambda x: (x, 1, "_{}".format(x)))
mapping = words_map.collect()
print("Key value pair -> %s" % (mapping))

返回結(jié)果:

Key value pair -> [('scala', 1, '_scala'), ('java', 1, '_java'), ('hadoop', 1, '_hadoop'), ('spark', 1, '_spark'), ('akka', 1, '_akka'), ('spark vs hadoop', 1, '_spark vs hadoop'), ('pyspark', 1, '_pyspark'), ('pyspark and spark', 1, '_pyspark and spark')]

Reduce

執(zhí)行指定的可交換和關(guān)聯(lián)二元操作后,然后返回RDD中的元素。

from pyspark import SparkContext
from operator import add


sc = SparkContext("local", "Reduce app")
nums = sc.parallelize([1, 2, 3, 4, 5])
adding = nums.reduce(add)
print("Adding all the elements -> %i" % (adding))

 這里的add是python內(nèi)置的函數(shù),可以使用ide查看:

def add(a, b):
    "Same as a + b."
    return a + b

reduce會(huì)依次對(duì)元素相加,相加后的結(jié)果加上其他元素,最后返回結(jié)果(RDD中的元素)。

Adding all the elements -> 15

Join

返回RDD,包含兩者同時(shí)匹配的鍵,鍵包含對(duì)應(yīng)的所有元素。

from pyspark import SparkContext


sc = SparkContext("local", "Join app")
x = sc.parallelize([("spark", 1), ("hadoop", 4), ("python", 4)])
y = sc.parallelize([("spark", 2), ("hadoop", 5)])
print("x =>", x.collect())
print("y =>", y.collect())
joined = x.join(y)
final = joined.collect()
print( "Join RDD -> %s" % (final))

返回結(jié)果:

x => [('spark', 1), ('hadoop', 4), ('python', 4)]
y => [('spark', 2), ('hadoop', 5)]
Join RDD -> [('hadoop', (4, 5)), ('spark', (1, 2))]

到這里pyspark環(huán)境配置和pyspark基本操作就基本介紹完畢了,希望對(duì)各位小伙伴有所幫助,更多python學(xué)習(xí)內(nèi)容也可以關(guān)注W3Cschool的其他文章!


0 人點(diǎn)贊