App下載

Dataset和DataLoader怎么用?Pytorch數據讀取總結!

猿友 2021-07-16 11:05:05 瀏覽數 (2806)
反饋

一、前言

確保安裝

  • scikit-image
  • numpy

二、Dataset

一個例子:

# 導入需要的包
import torch
import torch.utils.data.dataset as Dataset
import numpy as np
 
# 編造數據
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
# 數據[1,2],對應的標簽是[0],數據[3,4],對應的標簽是[1]
 
 
#創(chuàng)建子類
class subDataset(Dataset.Dataset):
    #初始化,定義數據內容和標簽
    def __init__(self, Data, Label):
        self.Data = Data
        self.Label = Label
    #返回數據集大小
    def __len__(self):
        return len(self.Data)
    #得到數據內容和標簽
    def __getitem__(self, index):
        data = torch.Tensor(self.Data[index])
        label = torch.IntTensor(self.Label[index])
        return data, label
 
# 主函數
if __name__ == '__main__':
    dataset = subDataset(Data, Label)
    print(dataset)
    print('dataset大小為:', dataset.__len__())
    print(dataset.__getitem__(0))
    print(dataset[0])

 輸出的結果

輸出的結果

我們有了對Dataset的一個整體的把握,再來分析里面的細節(jié):

#創(chuàng)建子類
class subDataset(Dataset.Dataset):

創(chuàng)建子類時,繼承的時Dataset.Dataset,不是一個Dataset。因為Dataset是module模塊,不是class類,所以需要調用module里的class才行,因此是Dataset.Dataset!

lengetitem這兩個函數,前者給出數據集的大小**,后者是用于查找數據和標簽。是最重要的兩個函數,我們后續(xù)如果要對數據做一些操作基本上都是再這兩個函數的基礎上進行。

三、DatasetLoader

DataLoader(dataset,
           batch_size=1,
           shuffle=False,
           sampler=None,
           batch_sampler=None,
           num_works=0,
           clollate_fn=None,
           pin_memory=False,
           drop_last=False,
           timeout=0,
           worker_init_fn=None,
           multiprocessing_context=None)

功能:構建可迭代的數據裝載器;
dataset:Dataset類,決定數據從哪里讀取及如何讀取;數據集的路徑
batchsize:批大??;
num_works:是否多進程讀取數據;只對于CPU
shuffle:每個epoch是否打亂;
drop_last:當樣本數不能被batchsize整除時,是否舍棄最后一批數據;
Epoch:所有訓練樣本都已輸入到模型中,稱為一個Epoch;
Iteration:一批樣本輸入到模型中,稱之為一個Iteration;
Batchsize:批大小,決定一個Epoch中有多少個Iteration;

還是舉一個實例:

import torch
import torch.utils.data.dataset as Dataset
import torch.utils.data.dataloader as DataLoader
import numpy as np
 
Data = np.asarray([[1, 2], [3, 4],[5, 6], [7, 8]])
Label = np.asarray([[0], [1], [0], [2]])
#創(chuàng)建子類
class subDataset(Dataset.Dataset):
    #初始化,定義數據內容和標簽
    def __init__(self, Data, Label):
        self.Data = Data
        self.Label = Label
    #返回數據集大小
    def __len__(self):
        return len(self.Data)
    #得到數據內容和標簽
    def __getitem__(self, index):
        data = torch.Tensor(self.Data[index])
        label = torch.IntTensor(self.Label[index])
        return data, label
 
if __name__ == '__main__':
    dataset = subDataset(Data, Label)
    print(dataset)
    print('dataset大小為:', dataset.__len__())
    print(dataset.__getitem__(0))
    print(dataset[0])
 
    #創(chuàng)建DataLoader迭代器,相當于我們要先定義好前面說的Dataset,然后再用Dataloader來對數據進行一些操作,比如是否需要打亂,則shuffle=True,是否需要多個進程讀取數據num_workers=4,就是四個進程
 
    dataloader = DataLoader.DataLoader(dataset,batch_size= 2, shuffle = False, num_workers= 4)
    for i, item in enumerate(dataloader): #可以用enumerate來提取出里面的數據
        print('i:', i)
        data, label = item #數據是一個元組
        print('data:', data)
        print('label:', label)

四、將Dataset數據和標簽放在GPU上(代碼執(zhí)行順序出錯則會有bug)

總結下來時有兩種方法解決

1.如果在創(chuàng)建Dataset的類時,定義__getitem__方法的時候,將數據轉變?yōu)镚PU類型。則需要將Dataloader里面的參數num_workers設置為0,因為這個參數是對于CPU而言的。如果數據改成了GPU,則只能單進程。如果是在Dataloader的部分,先多個子進程讀取,再轉變?yōu)镚PU,則num_wokers不用修改。就是上述__getitem__部分的代碼,移到Dataloader部分。

2.不過一般來講,數據集和標簽不會像我們上述編輯的那么簡單。一般再kaggle上的標簽都是存在CSV這種文件中。需要pandas的配合。

小結

到此這篇關于pytorch如何進行數據讀取的文章就介紹到這了,更多pytorch相關的學習內容請搜索W3Cschool以前的文章或繼續(xù)瀏覽下面的相關文章。


0 人點贊