App下載

給大數(shù)據(jù)分析實(shí)習(xí)生的面試經(jīng)驗(yàn)題庫

猿友 2020-08-13 16:45:12 瀏覽數(shù) (4014)
反饋

大數(shù)據(jù)分析是一個有吸引力的領(lǐng)域。這是有利可圖的,您有機(jī)會從事有趣的項(xiàng)目,而且您總是在學(xué)習(xí)新事物。因此,進(jìn)入大數(shù)據(jù)分析領(lǐng)域極具競爭力。開始大數(shù)據(jù)分析事業(yè)的最佳方法之一是通過大數(shù)據(jù)分析實(shí)習(xí)。

在大數(shù)據(jù)分析實(shí)習(xí)生面試題庫中,我們將研究所需的一般知識水平,典型面試過程的組成部分以及一些面試問題示例。注意,強(qiáng)調(diào)“通用”一詞是因?yàn)榫唧w情況因公司而異。

大數(shù)據(jù)分析實(shí)習(xí)面試會有什么期望?

大數(shù)據(jù)分析實(shí)習(xí)面試和專職大數(shù)據(jù)分析師之間的最大區(qū)別在于,通常不會期望您了解有關(guān)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)概念的極其具體的細(xì)節(jié)。

但是,您將期望擁有能夠在其上進(jìn)行構(gòu)建的基本構(gòu)建塊-包括Python,RSQL,統(tǒng)計(jì)和概率基礎(chǔ) 以及 基本的機(jī)器學(xué)習(xí)概念。

Python和R

您應(yīng)該具有腳本語言(最好是Python或R)的編程經(jīng)驗(yàn)。如果您是Python程序員,則還應(yīng)該對流行的庫(如Scikit-learn 和 Pandas)有基本的了解 。

(推薦教程:python教程

您應(yīng)該了解的內(nèi)容: 您應(yīng)該知道如何編寫基本功能,并對各種數(shù)據(jù)結(jié)構(gòu)及其用途有基本的了解。您還應(yīng)該了解Scikit-learn的基本(但仍必不可少)功能,例如test_train_splitStandardScaler。對于Pandas,您應(yīng)該像使用SQL編寫查詢那樣舒適地操作DataFrame

例如,您可能需要構(gòu)建一個簡單的機(jī)器學(xué)習(xí)模型來預(yù)測產(chǎn)品的銷售數(shù)量。在這種情況下,如果您是Python用戶,那么了解Scikit-Learn庫將非常有用,因?yàn)樗呀?jīng)提供了許多預(yù)構(gòu)建的函數(shù),例如上面提到的那些函數(shù)。

如何準(zhǔn)備: 嘗試在Kaggle上進(jìn)行大數(shù)據(jù)分析項(xiàng)目或在Interview Query上進(jìn)行實(shí)地考察,以了解您可能需要完成哪些項(xiàng)目。

為了更好地了解Scikit-Learn,最好使用它構(gòu)建一個簡單的機(jī)器學(xué)習(xí)模型,或者逐步完成其他人已經(jīng)完成的一些大數(shù)據(jù)分析項(xiàng)目。

(推薦微課:python3基礎(chǔ)微課

最后,嘗試在Interview Query上練習(xí)Python問題,以了解他們可能會問您什么。

SQL

不會期望您在關(guān)系數(shù)據(jù)庫方面有太多的經(jīng)驗(yàn),但是至少,您應(yīng)該了解SQL的工作方式。 如果您正在爭取大數(shù)據(jù)分析師的實(shí)習(xí)機(jī)會,那么您很可能會在擁有大量數(shù)據(jù)的公司工作。您將需要親自瀏覽這些數(shù)據(jù)來解決問題。

(推薦課程:SQL教程)

您應(yīng)該了解的內(nèi)容: 您應(yīng)該能夠編寫基本查詢,并且應(yīng)該知道如何使用SQL查詢來操縱數(shù)據(jù)。對于公司而言,將SQL納入其實(shí)際案例研究中非常普遍,因此,您必須非常了解SQL。

示例問題

編寫一個SQL查詢以從Employee 表中獲取第二高的薪水 。例如,給定下面的Employee表,查詢應(yīng)返回 200 作為第二高的薪水。如果沒有第二高的薪水,則查詢應(yīng)返回 null 。

  + ---- + ---------- +

  | ID | 薪金|

  + ---- + ---------- +

  | 1 | 100 |

  | 2 | 200 |

  | 3 | 300 |

  + ---- + ---------- +

如何準(zhǔn)備: 模式為學(xué)習(xí)基本SQL提供了很好的資源,可以在這里找到。此外,您還可以在線找到大量的SQL練習(xí)問題和練習(xí)案例研究。

(推薦微課:SQL微課)

統(tǒng)計(jì)與概率

您應(yīng)該對基本統(tǒng)計(jì)數(shù)據(jù)和概率有所了解 。這些概念是大多數(shù)機(jī)器學(xué)習(xí)和大數(shù)據(jù)分析概念的基礎(chǔ)。同樣,許多要求大數(shù)據(jù)分析職位的面試問題都與統(tǒng)計(jì)有關(guān)。

您應(yīng)該了解的內(nèi)容: 您應(yīng)該對基本概念有扎實(shí)的理解,包括但不限于概率基礎(chǔ),概率分布,估計(jì)和假設(shè)檢驗(yàn)。統(tǒng)計(jì)數(shù)據(jù)的一個非常普遍的應(yīng)用是條件概率,例如,假設(shè)客戶購買了產(chǎn)品C,那么購買該產(chǎn)品B的概率是多少?

如何準(zhǔn)備: 如果您對這些概念感到陌生,則可以利用許多免費(fèi)資源,例如Khan AcademyGeorgia Institute of Technology。

機(jī)器學(xué)習(xí)概念

雖然不希望您成為專家,但是您應(yīng)該對基本的機(jī)器學(xué)習(xí)模型和概念有很好的了解 。如果職位描述表明您將要構(gòu)建模型,則尤其如此。

您應(yīng)該了解的內(nèi)容: 這包括但不限于線性回歸,支持向量機(jī)和聚類之類的概念。理想情況下,您應(yīng)該對這些概念有基本的了解,并了解何時適合使用各種機(jī)器學(xué)習(xí)方法。

  例如,您可能需要對產(chǎn)品的價格點(diǎn)實(shí)施線性回歸以確定銷售數(shù)量。話雖如此,您將不需要生產(chǎn)或部署機(jī)器學(xué)習(xí)模型作為實(shí)習(xí)生。

領(lǐng)域知識

您應(yīng)該對 所申請的領(lǐng)域具有 領(lǐng)域知識(如果沒有,則應(yīng)該學(xué)習(xí))。

例如,如果您要申請市場營銷部門的大數(shù)據(jù)分析職位,那么了解不同的營銷渠道(例如社交媒體,會員,電視)以及核心指標(biāo)(例如LTV, CAC)。

大數(shù)據(jù)分析實(shí)習(xí)面試流程

同樣,面試過程最終取決于您所申請的公司。但是一般來說,大多數(shù)(如果不是全部)公司在面試過程中都有一些一般步驟,我將在下面進(jìn)行解釋。

作為實(shí)習(xí)生, 最糟糕的事情是不對公司的工作進(jìn)行研究 ,這是文化使命和價值觀。

初步篩選

通常,由公司的招聘人員或招聘經(jīng)理進(jìn)行初步篩選(通常是電話篩選)。這樣做的目的是為了使受訪者更好地了解其角色,并使訪問者更好地了解受訪者。

您應(yīng)該期望他們詢問您對這個職位和公司的興趣,為什么認(rèn)為自己很合適,以及與您過去的經(jīng)歷有關(guān)的問題。在極少數(shù)情況下,您可能還會被問到一個或兩個簡單的技術(shù)問題。

面試官只是在確保您對公司真正感興趣,您是一個很好的溝通者,并且沒有提出任何危險信號。

帶回家的情況

對于現(xiàn)在的許多大數(shù)據(jù)分析實(shí)習(xí),公司將要求您完成一項(xiàng)實(shí)戰(zhàn)挑戰(zhàn)。這意味著他們會給您一定的時間來完成他們給您的案例研究,這通常反映出您在實(shí)際角色中會遇到的問題。

這樣做是為了了解您如何解決問題(即思考過程),以及您是否具有完成問題所需的基本知識。案例的示例包括 清理數(shù)據(jù)集 并 建立機(jī)器學(xué)習(xí)模型以做出給定的預(yù)測或查詢數(shù)據(jù)集并分析數(shù)據(jù)或兩者結(jié)合。

現(xiàn)場采訪

最后是現(xiàn)場采訪,可以包括一輪到多達(dá)六輪的采訪。這些面試由行為和技術(shù)面試問題組成。您可能還需要現(xiàn)場完成一輪案件。

當(dāng)他們試圖確保您對成功擔(dān)任該角色所需的基本知識有深刻的了解時,他們還將評估您的行為動機(jī),并最終評估您是否適合團(tuán)隊(duì)或不。確保您處于最佳行為狀態(tài),但不要忘記做自己!

面試問題

以下是您希望了解的一些面試問題的幾個示例:

  1)什么是p值?

  2)什么是正則化,它試圖解決什么問題?

  3)您如何將年齡和收入之間的關(guān)系轉(zhuǎn)換成線性模型?

  4)如果您有兩個相等重量的骰子,總和為4的概率是多少?

  5)在整理和清理數(shù)據(jù)集時需要采取哪些步驟?

  6)什么是交叉驗(yàn)證,為什么有必要?

  7)舉例說明在確定機(jī)器學(xué)習(xí)模型有效性時,準(zhǔn)確性不是最佳指標(biāo)。

  8)INNEROUTER JOIN有什么區(qū)別?

以上就是關(guān)于大數(shù)據(jù)大數(shù)據(jù)分析實(shí)習(xí)生的面試經(jīng)驗(yàn)題庫的相關(guān)介紹了,希望對大家有所幫助。

0 人點(diǎn)贊